Performance and Results from the Globe at Night – Sky Brightness Monitoring Network

Dr Chu-wing SO, The University of Hong Kong

Dr Chun Shing Jason PUN, The University of Hong Kong Sze-leung CHEUNG, IAU Office for Astronomy Outreach Dr Constance WALKER, National Optical Astronomy Observatory Light Pollution: Theory, Modelling and Measurements conference 29.6.2017

Supported by the HKU Knowledge Exchange fund

Challenge

To measure the extent of light pollution over large area

1. Measuring Light Up \uparrow

- Remote sensing (DMSP-OLS, VIIRS-DNB, ISS, etc)
 - Upwelling light emitted directly from the light sources and light reflected off the Earth's surface.
 - Challenging calibration issues but can be overcome
 - Large spatial coverage (city \rightarrow regional \rightarrow global)
 - Low temporal sampling (each location normally has one chance of overpass within an evening; DMSP: 19:30, VIIRS: 01:30)

2. Measuring skyglow $\uparrow\downarrow$

- Limiting magnitude (e.g. Globe at Night, since 2006)
 - Citizen science project to report conditions of the night sky
 - Large geographical (115 countries) & temporal coverages with low cost
 - Uncertain data quality within the data set (±1.2 mag, due to various observing experience & mistakes made during data reporting, Kyba 2013)

Data is submitted via mobile devices, as well as desktop & laptop computers

Image credit: Globe at Night

2. Measuring skyglow $\uparrow\downarrow$

- Measuring Night Sky Brightness (NSB)
 - Through mobile phone apps or specialized light sensing meters
 - Mobile phone citizen science (e.g. Dark Sky Meter): good geographical but unsteady temporal coverage
 - Dedicated measuring devices: for SQM, limited temporal and geographical coverage
 - With ethernet or data-logger versions of SQM, we can set high sampling rate also good temporal coverage
 - Temporal coverage provides a direct linkage with the pattern of light usage.

- Endorsed by the IAU Executive Committee Working Group for the International Year of Light 2015 as a major Cosmic Light program
- Co-organizers:
 - Office of Astronomy Outreach, International Astronomy Union (IAU)
 - National Astronomical Observatory of Japan
 - The University of Hong Kong
 - The Globe at Night project

- Project aims:
 - Standardized night sky measurement method for worldwide research on light pollution
 - Highlight the negative environmental impacts of abusive artificial lighting for the general public and policy makers
 - Sustain light pollution public education and promote public engagement by live worldwide night sky brightness data and night sky measuring programs

- Methodology and highlights:
 - Zenith night sky brightness observation
 - Standardized observing method:
 - SQM-LE
 - Reasonable cost and sturdy
 - Standard Unihedron housing
 - reduce inconsistency in optical window attenuation
 - 30 seconds sampling interval
 - Standardized calibration scheme

Image credit: Taipei Astronomical Museum

- GaN-MN currently (June 2017) has:
 - 23 stations operating in 9 countries/regions in
 3 continents
 - $\ \text{Over} \ \textbf{30} \ \text{million individual measurements had} \\ \text{been collected}$

• Current stations (23 in total):

Data sharing: 1. Public interface of GaN-MN (embeded in Google map) http://globeatnight-network.org/

- Location currently at night: instantaneous real-time data
- Location currently during day-time: median value of NSB taken during previous night

Data sharing: 2. Real-time database

- All NSB data collected from GaN-MN stations fed to a MySQL database automatically and instantaneously
- Full sharing of real-time data from all stations among participating stations
- Participants access database through a user-friendly webbased interface
- Database allows for studies of temporal and geographical variations of light pollution and their correlations with various natural and artificial factors

Data sharing:

3. Archival database (accessed through *Globe at Night* page)

https://www.globeatnight.org/gan-mn.php

(Home page > Maps & Data)

Globe at Night

About Learn Observe Report Maps & Data Resources About News

Sponsors Contact Us

Globe at Night - Sky Brightness Monitoring Network (GaN-MN)

The GaN-MN project, an extension of the original Globe at Night project, is a global night sky brightness monitoring network using a commercially available meter (SQM-LE by Unihedron) for long-term monitoring of the light pollution conditions in different places around the world.

The project aims to:

- 1. deploy a standardized night sky measurement method for worldwide light pollution research
- 2. highlight the negative environmental impacts of abusive artificial lighting for the general public and policy makers; and
- 3. sustain light pollution public education and promote public engagement by live worldwide night sky brightness data and night sky measuring programs

About the GaN-MN Data

Globe at Night is hosting data taken by this network. It can be downloaded as a CSV file that can be opened in any spreadsheet application. The file has the following headers:

id: unique ID for each data entry

- created: timestamp according to the server clock
- received utc: timestamp converted to UTC
- received adjusted: timestamp corrected to local time
- somle serial number: serial number of SQM-LE

nsb, sensor_frequency, sensor_period_count, sensor_period_second, temperature: raw data reported by the unit, where nsb: reading in magnitudes per square arc second, see section 8.6 of the manual

device code: code of monitoring station (location of SQM-LE), complete list

Download the GaN-MN Data

2017	2016	2015	2014
 <u>Jan. 2017</u> (163.4 MB) <u>Feb. 2017</u> (127.0 MB) 	 Jan. 2016 (92.1 MB) Feb. 2016 (81.5 MB) Mar. 2016 (93.1 MB) Apr. 2016 (93.1 MB) May. 2016 (95.9 MB) Jun. 2016 (10.4 MB) Jul. 2016 (112.8 0 MB) Aug. 2016 (142.2 MB) Sep. 2016 (144.1 MB) Oct. 2016 (144.1 MB) Nov. 2016 (144.0 MB) Dec. 2016 (147.4 MB) 	 Jan. 2015 (18.5 MB) Feb. 2015 (31.0 ME) Mar. 2015 (34.8 MB) Apr. 2015 (40.6 MB) May. 2015 (34.8 MB) Jan. 2015 (37.1 MB) Jad. 2015 (37.7 MB) Aug. 2015 (70.0 MB) Sep. 2015 (87.3 MB) Oct. 2015 (86.0 MB) Dec. 2015 (82.0 ME) 	 <u>Nov. 2014</u> (2.9 MB) <u>Dec. 2014</u> (9.0 MB)

Download the GaN-MN Data

2017

17	2016	2015	2014
 Jan. 2017 (163.4 MB) Feb. 2017 (127.0 MB) 	 Jan. 2016 (92.1 MB) Feb. 2016 (81.5 MB) Mar. 2016 (91.5 MB) Apr. 2016 (93.1 MB) May. 2016 (95.9 MB) Jun. 2016 (110.4 MB) Jul. 2016 (128.0 MB) Aug. 2016 (142.2 MB) Sep. 2016 (144.1 MB) Oct. 2016 (155.0 MB) Nov. 2016 (144.0 MB) Dec. 2016 (157.4 MB) 	 Jan. 2015 (18.5 MB) Feb. 2015 (31.0 MB) Mar. 2015 (38.8 MB) Apr. 2015 (40.6 MB) May. 2015 (34.8 MB) Jun. 2015 (37.1 MB) Jul. 2015 (37.2 MB) Aug. 2015 (70.0 MB) Sep. 2015 (87.3 MB) Oct. 2015 (85.5 MB) Nov. 2015 (86.0 MB) Dec. 2015 (92.0 MB) 	 <u>Nov. 2014</u> (2.9 MB <u>Dec. 2014</u> (9.0 MB

- New archival file around once per month
- Raw data only limited quality check. Please contact us for details.

Raw data taken over one month at one station between 18:30 – 00:00

Data Selection

- For this particular analysis, focus on how and how much artificial lighting can affect the observed NSB (urban skyglow)
- Data excluded due to:
 - Sun (twilight)
 - Moon
 - artificial activities (such as observatory functions, etc)
- Data NOT excluded:
 - star/planetary light, Milky Way galaxy
 - rain
 - cloud

Monthly sample size (bars) and average NSB (lines) of a GaN-MN urban station (Hong Kong)

✓ Seasonal fluctuations (variations of cloud amount)

Monthly sample size (bars) and average NSB (lines) of a GaN-MN rural station (central mountain Taiwan)

19

Similar to "t-Grad" introduced by Thomas Posch

- "Jellyfish scotograph" (introduced by Thomas Posch)
- Huge range of NSB among stations
- Different latitudes of stations lead to different sampling time (astro. dark durations)
- Each curve is unique: Depicts the outdoor lighting usage at that particular location

- Most show a <u>gradual</u> decrease of sky brightness throughout the evening
- Suggest a decreasing amount of light pollution gradually due to reduction in light usage

- Some locations reveal one or multiple sharp drops ("curfews") in sky brightness throughout the evening
- Lighting pattern identified: massive switch-off of lighting at specific times every night

- Some locations have
 roughly steady level
 of sky brightness
 throughout the
 evening
- Two types identified:
 - minimal ambient lighting
 - 2. special lighting usages

- Easy to join in the effort
- All you need are:
 - A working SQM-LE with the standard Housing from Unihedron
 - Power supply and internet connection
- Benefits:
 - Present your results real-time to the world
 - Let's fight light pollution together!

Thank you!

For more information on the GaN-MN or willing to join,

- 1) Visit: http://globeatnight-network.org/
- 2) Email me (Chu Wing SO) at: globeatnight.network@gmail.com or

gan-mn@qq.com

